Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Eur Rev Med Pharmacol Sci ; 25(11): 4156-4162, 2021 06.
Article in English | MEDLINE | ID: covidwho-1281021

ABSTRACT

OBJECTIVE: Approximately 30% of patients with confirmed COVID-19 report persistent smell or taste disorders as long-term sequalae of infection. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection is associated with inflammatory changes to the olfactory bulb, and treatments with anti-inflammatory properties are hypothesized to attenuate viral injury and promote recovery of olfaction after infection. Our study investigated the efficacy of a supplement with Palmitoylethanolamide (PEA) and Luteolin to support recovery of olfaction in COVID-19 patients. PATIENTS AND METHODS: We conducted a randomized-controlled pilot study in outpatients with history of confirmed COVID-19 with post-infection olfactory impairment that persisted ≥ 90 days after SARS-CoV-2 negative testing. Patients were randomized to two times a day olfactory rehabilitation alone or weekly olfactory rehabilitation plus daily oral supplement with PEA and Luteolin. Subjects with preexisting olfactory disorders were excluded. Sniffin' Sticks assessments were performed at baseline and 30 days after treatment.  Data on gender, age, and time since infection were collected. Kruskal-Wallis (KW) test was used to compare variances of Sniff scores between groups over time, and Spearman's correlation coefficients were calculated to assess for correlations between Sniff Score and gender or duration of infection. RESULTS: Among 12 patients enrolled (n=7, supplement; n=5, controls), patients receiving supplement had greater improvement in olfactory threshold, discrimination, and identification score versus controls (p=0.01). Time since infection was negatively correlated with Sniff Score, and there was no correlation between gender. CONCLUSIONS: Treatment combining olfactory rehabilitation with oral supplementation with PEA and Luteolin was associated with improved recovery of olfactory function, most marked in those patients with longstanding olfactory dysfunction. Further studies are necessary to replicate these findings and to determine whether early intervention including olfactory rehabilitation and PEA+Luteolin oral supplement might prevent SARS-CoV-2 associated olfactory impairment.


Subject(s)
Amides/administration & dosage , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Antiviral Agents/administration & dosage , COVID-19 Drug Treatment , Ethanolamines/administration & dosage , Luteolin/administration & dosage , Olfaction Disorders/drug therapy , Palmitic Acids/administration & dosage , Adult , COVID-19/complications , COVID-19/diagnosis , Drug Therapy, Combination , Female , Humans , Male , Middle Aged , Olfaction Disorders/diagnosis , Olfaction Disorders/etiology , Pilot Projects , Single-Blind Method , Smell/drug effects , Smell/physiology
2.
Prostaglandins Other Lipid Mediat ; 154: 106540, 2021 06.
Article in English | MEDLINE | ID: covidwho-1096205

ABSTRACT

Coronavirus Disease 2019 (COVID-19) is upsetting the world and innovative therapeutic solutions are needed in an attempt to counter this new pandemic. Great hope lies in vaccines, but drugs to cure the infected patient are just as necessary. In the most severe forms of the disease, a cytokine storm with neuroinflammation occurs, putting the patient's life at serious risk, with sometimes long-lasting sequelae. Palmitoylethanolamide (PEA) is known to possess anti-inflammatory and neuroprotective properties, which make it an ideal candidate to be assumed in the earliest stage of the disease. Here, we provide a mini-review on the topic, pointing out phospholipids consumption in COVID-19, the possible development of an antiphospholipid syndrome secondary to SARS-CoV-2 infection, and reporting our preliminary single-case experience concerning to a 45-year-old COVID-19 female patient recently treated with success by micronized / ultramicronized PEA.


Subject(s)
Amides/administration & dosage , Anti-Inflammatory Agents/administration & dosage , Antiphospholipid Syndrome/drug therapy , COVID-19 Drug Treatment , Ethanolamines/administration & dosage , Neuroprotective Agents/administration & dosage , Palmitic Acids/administration & dosage , SARS-CoV-2/metabolism , Antiphospholipid Syndrome/etiology , Antiphospholipid Syndrome/metabolism , Antiphospholipid Syndrome/pathology , COVID-19/complications , COVID-19/metabolism , COVID-19/pathology , Female , Humans , Middle Aged
3.
Med Hypotheses ; 143: 109856, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-306177

ABSTRACT

A novel human coronavirus SARS-CoV-2 (also referred to as CoV-19) that emerged in late 2019 causes Covid-19 disease a respiratory tract infection which provokes about 4 million deaths per year. Unfortunately, to date, there is no specific antiviral treatment for COVID-19. Mast cells (MCs) are immune cells implicated in the pathogenesis of viral infections, where they mediate inflammation. Microbes, including virus, activate MCs through TLR releasing chemical pro-inflammatory compounds and cytokines. Although, in biomedical literature there are only few reports on MCs activation by SARS-CoV-2 infection. The production of pro-inflammatory cytokines by MC viral activation leads to increase pulmonary inflammation and fibrosis. Sodium Chromo-Glycate (SCG) described as a MC stabilizer, prevents the release of inflammatory chemical compounds, improve mouse survival and respiratory pathological changes in lung viral infection and suppresses inflammation. Furthermore, palmitoylethanolamide (PEA) a nuclear factor agonist, an endogenous fatty acid amide, which exerts a variety of biological effects, related to chronic inflammation and pain, is involved also in MCs homeostasis with an inhibitory and protective effect on the respiratory tract during viral infections. Here, we hypothesize for the first time, that SCG and/or PEA suppress MC activation and pro-inflammatory mediators release, playing an anti-inflammatory therapeutic role in the inflamed lung of patients with COVID-19.


Subject(s)
Coronavirus Infections/drug therapy , Cromolyn Sodium/administration & dosage , Ethanolamines/administration & dosage , Inflammation/drug therapy , Lung/drug effects , Mast Cells/drug effects , Palmitic Acids/administration & dosage , Pneumonia, Viral/drug therapy , Amides , Animals , Antiviral Agents/administration & dosage , COVID-19 , Drug Therapy, Combination , Humans , Mice , Models, Theoretical , Pandemics , Respiratory Tract Infections/drug therapy , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL